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Abstract The temporal Fokker–Planck equation (Boon et al. in J Stat Phys 3/4: 527, 2003) or
propagation–dispersion equation was derived to describe diffusive processes with temporal
dispersion rather than spatial dispersion as in classical diffusion. We present two general-
izations of the temporal Fokker–Planck equation for the first passage distribution function
f j (r, t) of a particle moving on a substrate with time delays τ j . Both generalizations follow
from the first visit recurrence relation. In the first case, the time delays depend on the local
concentration, that is the time delay probability Pj is a functional of the particle distribu-
tion function and we show that when the functional dependence is of the power law type,
Pj ∝ f ν−1

j , the generalized Fokker–Planck equation exhibits a structure similar to that of
the nonlinear spatial diffusion equation where the roles of space and time are reversed. In the
second case, we consider the situation where the time delays are distributed according to a
power law, Pj ∝ τ−1−α

j (with 0 < α < 2), in which case we obtain a fractional propagation-
dispersion equation which is the temporal analog of the fractional spatial diffusion equation
(with space and time interchanged). The analysis shows howcertainmicroscopicmechanisms
can lead to non-Gaussian distributions and non-classical scaling exponents.

Keywords Nonlinear transport · Fokker–Planck equation · Fractional kinetics

1 Introduction

Typical spatial diffusion processes are formulated in the continuum limit by the convection-
diffusion equation whose solution is a Gaussian centered at the most-likely position of a
particle (a walker) moving at a constant velocity. Reciprocally there are situations in which,
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instead of asking where the walker would be after a given time (long with respect to the
duration of an elementary time step), one addresses the the question as to how long it takes
to reach a given point, at some large distance from the starting position (large compared
to the unit length covered during the elementary time step). For a stochastic process, one
then asks what is the distribution of times taken to reach that point and the problem can be
described by a propagation-dispersion equation giving a Gaussian time distribution centered
at the most likely time of arrival at the target point [1,2]. This characterizes classical time
dispersion when the distribution originates from an Einstein type recurrence relation [3] for
the probability f (r, t) of finding the particle at position r at time t as briefly described in
Sect. 2. A practical example is given in [4] which describes an experiment where small beads
are dropped into a container filled with larger beads. The small beads, driven by gravity,
diffuse through the array of larger beads and their collisions with the larger ones induce time
delays in the downward motion. Measurement of the arrival times of the small beads at the
end point of the container gives a Gaussian distribution, (see Fig. 9 in [4]) i.e. the signature
of a temporal-dispersion process.

In many problems in physics, chemistry and biology, the complexity of the media where
particles move renders the classical description giving a Gaussian distribution incomplete
and the subject has been intensely considered in the literature from the viewpoint of spatial
diffusion (see e.g. the reviews in [5] and [6] with a well documented list of references).
Concomitantly, in these media processes are time delayed or accelerated because they exhibit
a functional dependence on the local concentration or on the time delays, in which cases
one expects deviations from the classical Gaussian distribution of time delays. However,
besides classical first passage phenomena [7], temporal diffusive processes have been rather
overlooked in the literature.

Herewe start with the generalised recurrence relationwhere thewaiting time probability is
a functional of the distribution function f (r, t) and in Sect. 3 we derive a generalized Fokker–
Planck equation (GFPE) for the first passage distribution function f (r, t). Using a scaling
argument (Sect. 4)we obtain its solutionwhich is shown to exhibit a narrowing of the temporal
distribution, i.e. temporal localization. Alternatively in Sect. 5 we introduce a power law
ansatz for the time delay probability and we obtain a description of the evolution of the time
distribution in the formof a fractional temporal Fokker–Planck equation (FFPE). So it follows
that the macroscopic evolution of the system is given by two complementary descriptions,
the nonlinear temporal Fokker–Planck equation or the fractional temporal Fokker–Planck
equation, depending on the basic mechanisms of the time delay processes.

2 Generalized Recurrence Relation

Consider a walker moving on a one-dimensional lattice whose sites are labeled by integers
l = 0, 1, 2, . . . , n. The distance between neighboring sites is denoted by δr . The clock is
set at t0 = 0 when the particle is at site l = 0 and its trajectory will intercept successively
sites l = 1, 2, 3, . . . for the first time at times t1, t2, t3 . . . . The t j ’s are integer multiples of
the time step δt . While sites 0, 1, 2, 3, . . . are equally spaced, the time differences between
first visits, t j+1 − t j , are (in general) not equally distributed, that is when the particle is at
position r − δr it will take τ j time steps to move to the next neighboring site r . So if j is the
random variable which corresponds to the number of steps required for the particle to reach
position r for the first time at time t , given it was at r − δr at time t − τ j , the probability
f (r, t) of finding the particle at position r for the first time at time t is expressed by the finite
recurrence equation
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Fig. 1 Number of runners N versus finishing time (in min) for the New York marathon 1996 (data from NY
Marathon.nb at http://www.tcsnycmarathon.org)

f (r, t) =
N∑

j=1

p j f (r − δr, t − τ j ), (1)

where τ j = j δt . Here p j is the time delay probability, i.e. the probability that it takes j time
steps for the particle to move from site r − δr to site r . In practice this probability can be
obtained from a prescribed distribution or inferred from the physics of the specific problem
considered or ideally extracted from possibly available data sets. Assuming the particles can
reach any given position, the time-delay probabilities must be normalized as

∑N
j=1 p j = 1

which is consistent with the normalization of the first-visit probabilities,
∑∞

j=0 f (r, τ j ) = 1.
Equation (1) is the first visit equation [1,2] which is the analog of Einstein’s master

equation for the classical randomwalk wherefrom the usual diffusion equation follows [3]. In
the hydrodynamic limit the first visit equation (1) yields the propagation–dispersion equation
[1,2]

∂

∂r
f (r, t) + 1

c

∂

∂t
f (r, t) = 1

2
γ

∂2

∂t2
f (r, t), (2)

where the value of c−1 is given by the first moment J1 = ∑N
j=1 j p j , and that of γ by the

second cumulant
∑N

j=1 j2 p j − J 21 = J2 − J 21 ; c is the propagation speed of the particle,
and γ the time dispersion coefficient. Equation (2) is the analog of the advection-diffusion
equation, but describes a dispersion process in time (instead of diffusion in space) with a
drift expressed by a propagation speed with non-zero bounded values. The normalization

condition,
∫∞
0 f (r, t)dt = 1, requires that

(
∂ f (r,t)

∂t

)

t=0
= 0 for any r > 0. The solution

to Eq. 2 is a Gaussian in time [1,2]. A typical example of a time dispersion process is the
Marathon race where one considers the distribution of the arrival times of the runners as
illustrated in Fig. 1. However one nevertheless observes deviations from the Gaussian in the
wings of the distribution indicating that the Gaussian is clearly an approximation.

Consider now that the waiting times depend on the particle distribution function (in the
example of the marathon (Fig. 1) this corresponds to the local concentration of runners):
other typical examples are the dispersion process of particles in the cellular membrane or in
media subject to concentration gradients such as crowded environments in biological media.
Then, the time delay probability p j in Eq. (1) is replaced by a functional of f (r, t)
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Pj ≡ p j F
(ν)
j [ f ] (3)

with the normalization
∑

j Pj = ∑N
j=1 p j F

(ν)
j [ f ] = 1, and where the index ν is such that

F (ν=1)[ f ] = 1. The functional plays the role of a weighting factor to the amplitude of the
waiting time probabilities. F (ν)

j [ f ] is a functional which means that, in principle, it depends
on f (r, t) , f (r, t − δt) , f (r, t − 2δt), …For example, if we consider an algebraic function
of the form F (ν)

j [ f ] ∼ f ν−1 (r, t − jδt), then the normalization demands

F (ν)
j [ f ] = f ν−1 (r, t − jδt)

∑N
l=1 pl f

ν−1 (r, t − lδt)
. (4)

So for clarity, we should write explicitly

F (ν)
j [ f ] = Fj [ f (r, t − jδt) ; f (r, t − δt) , f (r, t − 2δt) , . . . , f (r, t − Nδt)] , (5)

which allows for an explicit dependence on the index j . A slightlymore restricted formwhich
does not include the j dependence, i.e. Fj

[
f j ; f1, . . . , fN

] = F
[
f j ; f1, . . . , fN

]
will be

considered below. With (3), Eq. (1) becomes the generalised recurrence relation

f (r + δr, t) − f (r, t) =
n∑

j=1

p j F
(ν)
j [ f j ] ( f (r, t − jδt) − f (r, t)) . (6)

3 Nonlinear Fokker–Planck Equation

We consider the expansion of F (ν)
j [ f ] (for simplicity in the notation we shall omit the upper

index (ν) which will be reintroduced when necessary):

Fj [ f ] = {
Fj (x; y1 . . . , yN )

}
f

−δt
{
j
∂Fj (x;y1...,yN )

∂x +∑N
l=1 l

∂Fj (x;y1...,yN )

∂yl

}

f

(
∂ f (r,t)

∂t

)
+ . . . , (7)

where the notation {. . .} f means that all the variables x, y1, . . . are to be set equal to the
f (r, t)’s as on the r.h.s. of Eq. 5. Using this expansion to second order, the generalized
recurrence relation (6) becomes

δr
∂ f (r, t)

∂r
+ 1

2
(δr)2

∂2 f (r, t)

∂r2
+ . . . =

−δt
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f

∂ f (r, t)

∂t

+1

2
(δt)2

N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f

∂2 f (r, t)

∂t2

+ (δt)2
N∑

j=1

j p j

{
j
∂Fj (x; y1 . . . , yN )

∂x
+

N∑

l=1

l
∂Fj (x; y1 . . . , yN )

∂yl

}

f

(
∂ f (r, t)

∂t

)2

.

(8)

By multiscale expansion and using the normalization condition (see details in Appendix 1)
we obtain
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∂ f (r, t)

∂r
+ J1 [ f ]

δt

δr

∂ f (r, t)

∂t

= (
J2 [ f ] − (J1 [ f ])

2) (δt)2

2 δr

∂2 f (r, t)

∂t2
+ � [ f ]

(δt)2

δr

(
∂ f (r, t)

∂t

)2

(9)

where the Ji ’s are the generalized moments

J1 [ f ] =
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f ,

J2 [ f ] =
N∑

j=1

j2 p j
{
Fj (x; y1 . . . , yN )

}
f ,

� [ f ] =
N∑

j=1

j p j

{
j
∂Fj (x; y1 . . . , yN )

∂x
+

N∑

l=1

l
∂Fj (x; y1 . . . , yN )

∂yl

}

f

−
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f ×

×
N∑

l=1

lpl

{
∂Fl (x; y1 . . . , yN )

∂x
+

N∑

k=1

∂Fl (x; y1 . . . , yN )

∂yk

}

f

. (10)

Equation (9) gives the general form of the generalized temporal Fokker–Planck equation
(GFPE).

We consider the case where Fj (x; y1 . . . , yN ) does not depend explicitly on j , i.e.
Fj (x; y1 . . . , yN ) = F (x; y1 . . . , yN ), in which case the normalization conditions (41)
imply

0 =
{

∂F (x; y1 . . . , yN )

∂x
+

N∑

l=1

∂F (x; y1 . . . , yN )

∂yl

}

f

, (11)

so that the second term on the r.h.s. of � [ f ] in (10) vanishes, and we have

J1[ f ] = J1 =
∑

j

j p j ; J2[ f ] = J2 =
∑

j

j2 p j ,

� [ f ] =
{
J2

∂Fj (x; y1 . . . , yN )

∂x
+ J1

N∑

l=1

l
∂F (x; y1 . . . , yN )

∂yl

}

f

= (
J2 − J 21

) {∂F (x; y1 . . . , yN )

∂x

}

f
. (12)

The generalized Fokker–Planck equation (9) then becomes

∂ f (r,t)
∂r + 1

c
∂ f (r,t)

∂t = 1

2
γ

⎡

⎣∂2 f (r, t)

∂t2
+ 2

{
∂F (ν) (x; y1 . . . , yN )

∂x

}

f

(
∂ f (r, t)

∂t

)2
⎤

⎦ ,

c−1 =
∑

j

p j j
δt

δr
, γ =

⎡

⎢⎣
∑

j

p j j
2 −

⎛

⎝
∑

j

p j j

⎞

⎠
2
⎤

⎥⎦
(δt)2

δr
. (13)
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Here c and γ are the propagation speed and the temporal dispersion coefficient respec-
tively. In Eq. (13) we have reintroduced the index ν for later discussion. Since by definition
F (ν=1)[ f ] = 1, it is clear that for ν = 1, Eq. (13) [as well as (9)] reduces to the usual
propagation–dispersion equation (2).

4 Scaling and Power Law Distribution

We now ask for a scaling solution of the GFPE

f (r, t) = r−βφ

(
t − r/c

rβ

)
, (14)

which by substitution in (9) with ζ = t−r/c
rβ gives

−φ (ζ ) − ζφ′ (ζ ) =
β−1r1−2β 1

2

[(
J2 [ f ] − (J1 [ f ])

2) φ′′ (ζ ) + 2 r−β� [ f ] φ′2 (ζ )
]
. (15)

The scaling equation can be satisfied either with � [ f ] = 0 or with � [ f ] ∼ 1/ f (r, t)
and, in both cases β = 1/2. The first case is realized for ν = 1, i.e. F (ν) = 1; then(
J2 [ f ] − (J1 [ f ])2

)
(δt)2/δr = γ and J1 [ f ] δt/δr = c−1, and Eq. (9) reduces to the clas-

sical temporal Fokker–Planck equation with Gaussian solution [1,2]. The second case can be
satisfied if we require that F (ν)[ f ] be a normalized power law independent of j . Indeed when

F (ν)[ f ] does not dependent on j , � [ f ] (12) reduces to
(
J2 − (J1)2

) { ∂F (ν)(x;y1...,yN )
∂x

}

f
,

and from the normalization condition, one can write F in terms of an unknown function of
a single variable, K (x), as

F (ν) (x; y1 . . . , yN ) = K (x)

p1K (y1) + . . . + pN K (yN )
, (16)

which gives
{

∂F (ν) (x; y1 . . . , yN )

∂x

}

f

= 1

p1 + . . . + pN

1

K ( f )

∂K ( f )

∂ f
= ∂ ln K ( f )

∂ f
. (17)

The demand � [ f ] ∼ 1/ f (r, t) implies that, for some constant ν ≥ 1

∂ ln K ( f )

∂ f
= ν − 1

f
�⇒ K ( f ) = f ν−1, (18)

so that

F (ν) (x; y1 . . . , yN ) = xν−1

p1y
ν−1
1 + . . . + pN y

ν−1
N

. (19)

Notice that the power law form follows from the scaling. It is not being introduced as an
arbitrary ansatz but, rather, is the only functional form that satisfies the requirement of
producing diffusive behavior. With this result and with β = 1/2, Eq. (15) becomes

− φ (ζ ) − ζφ′ (ζ ) = γ
[
φ′′ (ζ ) + 2(ν − 1) φ−1 (ζ ) φ′2 (ζ )

]
. (20)

We also note that if one uses (19) as an ansatz in the GFPE [Eq. (13)] one obtains

∂ f (r, t)

∂r
= 1

2
γ

[
∂2 f (r, t)

∂t2
+ 2

ν − 1

f (r, t)

(
∂ f (r, t)

∂t

)2
]

, (21)
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which with the scaling relation (14) gives exactly (20).
Equation (20) can be simplified by introducing a change of variables and a transformation

x = ζ/
√

γ = t − r/c√
γ r

; φ (ζ ) = w
1

2ν−1 (x) , (22)

giving
d2w

dx2
+ x

dw

dx
+ (2ν − 1)w = 0, (23)

which equation can be matched to the general confluent equation (see Appendix 2) and has
the general solution

w (x) = A exp

(
− x2

2

)
M

(
1 − ν,

1

2
,
x2

2

)
+ Bx exp

(
− x2

2

)
M

(
3

2
− ν,

3

2
,
x2

2

)
(24)

where A and B are constants and M(a, b, x) is the confluent hypergeometric function. Since
the solution must be even in x , B must be zero for symmetrical reasons. So the scaling
distribution reads

f (r, t) = 1√
γ r

φ

(
t − r/c√

γ r

)

= 1√
γ r

[
A M

(
1 − ν,

1

2
,
(t − r/c)2

2 γ r

)
exp

(
− (t − r/c)2

2 γ r

)] 1
2ν−1

. (25)

For ν = 1, M(0, 1
2 ,

x2
2 ) = 1; consequently in order to retrieve the normalized Gaussian

solution, A must be
√
2/π and the final solution is given by

f (r, t) = 1√
γ r

[√
2

π
M(1−ν) exp

(
− (t − r/c)2

2 γ r

)] 1
2ν−1

, (26)

where M(1−ν) = M(1−ν, 1
2 ,

x2
2 )with x = t−r/c√

γ r . Figure 2 illustrates this result for different
values of the exponent.

For ν = 3/2, we have M(− 1
2 ,

1
2 ,

x2
2 ) = 1√

2
exp( x

2

4 ) E (0)
1 (x) (where E (0)

1 (x) is the
parabolic cylinder function) giving

fν=3/2 (r, t) = 1√
γ r

(
1√
π

E (0)
1

(
t − r/c√

γ r

)
exp−

(
t − r/c

2
√

γ r

)2
)1/2

. (27)

For ν > 3/2, we have M(−m
2 , 1

2 ,
x2
2 ), but the confluent hypergeometric function withm > 1

exhibits alternating positive and negative regions separated by a singularity and consequently
so for the distribution function; therefore values of ν > 3/2 must be physically rejected and
the meaningful range of the exponent is 1 ≤ ν ≤ 3/2, as illustrated in Fig. 2. So when the
nonlinear exponent ν increases we observe a narrowing of the distribution function that is a
localization in temporal dispersion.

The asymptotic behavior of the distribution follows from the observation that for |x | large
(see AS 13.5.1 in [8])

M (a, b, x) = 
(b)


(a)
ex xa−b (1 + O(|x |−1) ; x ∈ 
, > 0, (28)
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Fig. 2 M(1− ν, 1
2 , x2

2 ) exp
(
− x2

2

)
[Eq. (28)] as a function of x for various values of the exponent 1 ≤ ν ≤

3/2. The inset shows the coefficient of the Gaussian term which for ν = 1.0 is one

which when used in (26) gives

f (x >> 1) � 1√
γ r

⎛

⎝ 1√
π



( 1
2

)


 (1 − ν)

(
x2

2

) 1−2ν
2

⎞

⎠

1
2ν−1

(29)

or, with t >> r/c,

f
(
r, t >>

√
γ r

) �
(

1


 (1 − ν)

) 1
2ν−1

√
2

t
, (30)

that is, for long times, f (r, t) ∼ t−1, which is in reasonable agreement with the observation
of time delays in earthquake distributions [9,10] P(t) ∼ t−γ with γ � 0.9.

5 Fractional Fokker–Planck Equation

The generalization of temporal diffusion to nonlinear waiting time probabilities discussed so
far was developed based on amultiscale expansion that is only valid when the first and second
moments of the waiting time probability exist. We now consider a second generalization that
applies when the second moment does not exist. Unlike the nonlinear case, we will only
consider processes for which the waiting time probabilities are statistically independent.
When the second moment exists, this then leads via the central limit theorem to the classical
Gaussian time distribution (see Fig. 1) since for the lattice model described in Sect. 2 the
probability to reach lattice position l in time is simply the sum of the independent random
waiting times t̂ = ∑n

l=1 t̂l . Explicitly, for large l, that is r >> δr , the probability for the
stochastic variable t̂ to lie in the interval [T, T + dT ] is given by a Gaussian

f (T ; r) =
√

1

2πσ
exp

(
−
(
T − t (r)

)2

2σ

)
, (31)
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where the most likely time is

t =
n∑

l=1

〈
t̂l
〉 = n

∫ ∞

0
dτ τp (τ ) (32)

with p (τ ), the time delay probability, and the width of the distribution is

σ(r) =
n∑

l=1

(〈
t̂ 2
l

〉− 〈
t̂l
〉2) = n

∫ ∞

0
dτ τ 2 p (τ ) − 1

n
t2. (33)

Consider now the case of distributions which do not possess second moments. In particular,
we consider a power law distribution

p(t) = αtα0
tα+1 �(t − t0) ; 0 < α < 2 ; t → ∞, (34)

and let t̂ = 1
N1/α

∑n
l=1 t̂l . In this case, straightforward analysis, see Appendix 3 for details,

results in the fractional temporal diffusion equation

∂

∂r
f (T ; r/δr) =

[
αt0

(1 − α)δr

∂

∂T
+ αtα0

δr

 (−α)

∂α

∂T α

]
fα (T ; r/δr) . (35)

Notice that, with time and space variables interchanged, the FFPE exhibits a structure anal-
ogous to the fractional Fokker–Planck equation for anomalous spatial diffusion that follows
from the continuous time random walk model with a power law ansatz for the waiting times
[6].

6 Conclusions

When considering diffusion processes from the viewpoint of a temporal formulation—dual
to the classical spatial description—a Fokker–Planck equation (FPE) description is found
to be equally valid for temporal diffusion. In the latter case the FPE exhibits a solution for
the temporal distribution function showing Gaussian behavior [1,2] similar to the Gaussian
solution of the classical diffusion equation, but with time and space reversed. However when,
as in most real systems, the diffusive medium is inhomogeneous, this classical description is
modified because the dynamics, and consequently the corresponding distribution function,
may depend on the local concentration variations in time and space and on the distribution of
time delays in the diffusive process. We considered both types of dependencies. (i) Starting
from the classical randomwalkmodel, we generalized an Einstein-like recurrence relation by
including a functional concentration dependence in the waiting time probability wherefrom
a temporal nonlinear Fokker–Planck equation is obtained and solved to yield the tempo-
ral distribution function evolving from Gaussian shape to finite support when the nonlinear
exponent increases. (ii) On the other hand using a power law waiting time probability distri-
bution we obtain a fractional temporal Fokker–Planck equation similar to the usual fractional
Fokker–Planck equation [6] with space and time interchanged. These results should provide
insight for the elucidation of the mechanisms of temporal diffusion processes. Our analysis
shows how certain microscopic mechanisms, e.g. weighting times that are influenced by
the local density of random walkers, can lead to non-Gaussian distributions with finite sup-
port and non-classical scaling exponents. In particular, our results show that a non-Gaussian
power-law distribution of first passage times follows either straightforwardly from an ansatz
which is shown to be the solution of the fractional equation or from the asymptotic behavior
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of the solution of the generalized Fokker–Planck equation (FPE)with the distinction that with
the power law ansatz the exponent is merely a parameter whereas in the FPE approach the
asymptotic power law expression has no adjustable parameter and the exponent is obtained
analytically [∼ t−1, Eq. 30]

Finally, we note that the solutions to the generalized FPE bear some similarity to those
found for certain self-similar Fokker–Planck equations [11] so that one might expect a con-
nection between the two. In fact, the latter case would, in our language, correspond to a FPE
with time-dependent drift velocity and diffusion coefficient whereas in our case those quan-
tities actually depend on the distribution itself. So any connection between the two models
is probably fortuitous.

Appendix 1: Expansion of the Recurrence Relation

We first consider the expansion of F (ν)
j [ f ] (for simplicity in the notation we shall omit the

upper index (ν) which will be reintroduced when necessary):

Fj [ f ] = {
Fj (x; y1 . . . , yN )

}
f

− δt

{
j
∂Fj (x; y1 . . . , yN )

∂x
+

N∑

l=1

l
∂Fj (x; y1 . . . , yN )

∂yl

}

f

×
(

∂ f (r, t)

∂t

)
+ . . . (36)

where the notation {. . .} f means that all the variables x, y1, . . . are to be set equal to the
f (r, t)’s in the r.h.s. of Eq. (5). Using this expansion, the generalized recurrence relation (6)
becomes

δr
∂ f (r, t)

∂r
+ 1

2
(δr)2

∂2 f (r, t)

∂r2
+ . . . =

−δt
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f

∂ f (r, t)

∂t

+1

2
(δt)2

N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f

∂2 f (r, t)

∂t2

+ (δt)2
N∑

j=1

j p j

{
j
∂Fj (x; y1 . . . , yN )

∂x
+

N∑

l=1

l
∂Fj (x; y1 . . . , yN )

∂yl

}

f

(
∂ f (r, t)

∂t

)2

+ . . .

(37)

We now perform a multiscale expansion with

∂

∂r
→ ε

∂

∂r1
+ ε2

∂

∂r2
; ∂

∂t
→ ε

∂

∂t1
+ ε2

∂

∂t2
, (38)

and f = f (0) + ε f (1) + O(ε2), where f (0) is the distribution function in the absence of
dispersion. To first order, we obtain

O(ε1) : δr
∂ f (0) (r, t)

∂r1
= −δt

N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f (0)

∂ f (0) (r, t)

∂t1
, (39)
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and to second order

O(ε2) : δr
∂ f (1) (r, t)

∂r1
+ δr

∂ f (0) (r, t)

∂r2
+ 1

2
(δr)2

∂2 f (0) (r, t)

∂r21

= −δt
N∑

j=1

j p j

⎧
⎨

⎩
∂Fj (x; y1 . . . , yN )

∂x
+

N∑

l=1

∂Fj (x; y1 . . . , yN )

∂yl

⎫
⎬

⎭
f (0)

f (1) (r, t)
∂ f (0) (r, t)

∂t1

−δt
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f

(
∂ f (1) (r, t)

∂t1
+ ∂ f (0) (r, t)

∂t2

)

+1

2
(δt)2

N∑

j=1

j2 p j
{
Fj (x; y1 . . . , yN )

}
f

∂2 f (0) (r, t)

∂t21

+ (δt)2
N∑

j=1

j p j

⎧
⎨

⎩ j
∂Fj (x; y1 . . . , yN )

∂x
+

N∑

l=1

l
∂Fj (x; y1 . . . , yN )

∂yl

⎫
⎬

⎭
f (0)

(
∂ f (0) (r, t)

∂t1

)2

.

(40)

From the normalization condition (with (7) where ∂ f (r,t)
∂t is unconstrained)

1 =
N∑

j=1

p j
{
Fj (x; y1 . . . , yN )

}
f (0) ,

0 =
N∑

j=1

p j

{
j
∂Fj (x; y1 . . . , yN )

∂x
+

N∑

l=1

l
∂Fj (x; y1 . . . , yN )

∂yl

}

f (0)

. (41)

It is easy, for instance, to check that these relations are indeed verified in the case of the
power law (4). Differentiating (39) with respect to r1 and reinserting (39) in the result, we
obtain

(δr)2
∂2 f (0) (r, t)

∂r21
= −δrδt

N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f (0)

∂2 f (0) (r, t)

∂t1∂r1

= (δt)2
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f (0)

∂

∂t1

{
N∑

l=1

lpl Fl (x; y1 . . . , yN )

}

f (0)

∂ f (0) (r, t)

∂t1

= (δt)2
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f (0) ×

×
N∑

l=1

lpl

{
∂Fl (x; y1 . . . , yN )

∂x
+

N∑

k=1

∂Fl (x; y1 . . . , yN )

∂yk

}

f (0)

(
∂ f (0) (r, t)

∂t1

)2

+ (δt)2

⎛

⎝
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f (0)

⎞

⎠
2

∂2 f (0) (r, t)

∂t21
. (42)
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Using this result in (40) gives

δr
∂ f (1) (r, t)

∂r1
+ δr

∂ f (0) (r, t)

∂r2

= −δt
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f (0)

(
∂ f (1) (r, t)

∂t1
+ ∂ f (0) (r, t)

∂t2

)

−δt
N∑

j=1

j p j

{
∂Fj (x; y1 . . . , yN )

∂x
+

N∑

l=1

∂Fj (x; y1 . . . , yN )

∂yl

}

f (0)

f (1) (r, t)
∂ f (0) (r, t)

∂t1

+ 1

2
(δt)2

⎛

⎜⎝
N∑

j=1

j2 p j
{
Fj (x; y1 . . . , yN )

}
f (0) −

⎛

⎝
N∑

j=1

j p j
{
Fj (x; y1 . . . , yN )

}
f (0)

⎞

⎠
2
⎞

⎟⎠
∂2 f (0) (r, t)

∂t21

+ (δt)2

⎛

⎝
∑N

j=1 j p j

{
j

∂Fj (x;y1...,yN )

∂x +∑N
l=1 l

∂Fj (x;y1...,yN )

∂yl

}

f (0)

−∑N
j=1 j p j

{
Fj (x; y1 . . . , yN )

}
f (0)

∑N
l=1 lpl

{
∂Fl (x;y1...,yN )

∂x +∑N
k=1

∂Fl (x;y1...,yN )
∂yk

}

f (0)

⎞

⎠

×
(

∂ f (0) (r, t)

∂t1

)2

, (43)

After recombining first and second order terms, resummation yields Eq. (9).

Appendix 2: General Confluent Equation

d2w

dx2
+ x

dw

dx
+ (2ν − 1)w = 0, (44)

From AS 13.1.35 in [8], the general confluent equation is

0 = w′′ +
(
2a

y
+ 2 f ′(y) + bh′(y)

h(y)
− h′(y) − h′′(y)

h′(y)

)
w′

+
(
bh′(y)
h(y)

− h′(y) − h′′(y)
h′(y)

)(
a

y
+ f ′(y)

)
w

+
(
a(a − 1)

y2
+ 2a f ′(y)

y
+ f ′′(y) + f ′2(y) − ch′2(y)

h(y)

)
w. (45)

This equation and Eq. (44) match provided

a = 0 ; b = 1

2
; c = 1 − ν ; f (y) = h(y) = y2

2
,

and the general solution then is

w (y) = A exp

(
− y2

2

)
M

(
1 − ν,

1

2
,
y2

2

)
+ B exp

(
− y2

2

)
U

(
1 − ν,

1

2
,
y2

2

)
, (46)

or, using AS 13.1.3 in [8], with y ≡ x ,

w (x) = A

[
M

(
1 − ν,

1

2
,
x2

2

)
+ x

B

A
M

(
3

2
− ν,

3

2
,
x2

2

)]
exp

(
− x2

2

)
. (47)

Note that w (0) = A and w′ (0) = B.
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Appendix 3: Derivation of the Fractional Temporal Diffusion Equation

The probability for t̂ = Tα is

fα(Tα, N ) = ∫∞
0 δ(Tα − 1

N1/α

∑N
i=1 ti )p(t1) . . . p(tN )dt1 . . . dtN (48)

so that

f̃α(ω, N ) ≡
∫ ∞

−∞
eiωT fα(Tα) =

(
p̃
( ω

N 1/α

))N
, (49)

where a simple calculation gives

p̃(ω) = α(−iωt0)
α
(−α,−iωt0), (50)

which has the expansion for small ωt0

p̃(ω) = α(−iωt0)
α
(−α) − α

∞∑

k=0

(−iωt0)k

k!(k − α)
. (51)

Thus, taking the inverse Fourier transform and expanding in 1/N leads to the result

fα(Tα, N ) =
∫ ∞

−∞

(
p̃
( ω

N 1/α

))N
e−iωTα

dω

2π

=
∫ ∞

−∞
exp

(
−iωTα + N ln p̃

( ω

N 1/α

)) dω

2π

=
∫ ∞

−∞
exp

(
−iωTα + α (−iωt0)

α 
(−α) + α

1 − α
(−iωt0)N

1−1/α
)

× exp
(O(N 1−2/α)

) dω

2π
, (52)

so that the higher order terms are negligible for large N provided α < 2. The probability
density that the first arrival time to reach position N is T = N 1/αTα is therefore

f (T, N ) =
∫ ∞

0
fα(Tα, N )δ(T − N 1/αTα)dTα

= N−1/α
∫ ∞

−∞
exp

(
−iωN 1−1/α

(
T

N
+ α

1 − α
t0

))

× exp
(
α (−iωt0)

α 
(−α) + O(N 1−2/α)
) dω

2π
.

Rescaling the integration variable gives

f (T, N ) =
∫ ∞

−∞
exp

(
iω

(
T + α

1 − α
t0N

)
+ α (iωt0)

α 
(−α)N

)
dω

2π
(53)

which is the Levy-stable distribution with stability parameter α. Defining the spatial variable
r ≡ Nδr , it is easy to see that this distribution satisfies the fractional temporal diffusion
equation

∂

∂r
f (T ; r/δr) =

[
αt0

(1 − α)δr

∂

∂T
+ αtα0

δr

 (−α)

∂α

∂T α

]
fα (T ; r/δr) . (54)
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