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Three different results for the nonanalytic dependence of the shear viscosity on shear rate have been
given. This discrepancy is resolved by an independent calculation based on the nonlinear Navier-Stokes-
Langevin equations. The relationship to previous calculations and reasons for the differences are described.

More than a decade ago Kawasaki and Gunton! showed

that the nonlinear response of a fluid under shear is nonan-
alytic in the shear rate. Their calculation involved two com-
ponents. First, the nonequilibrium statistical mechanics for
linear response was extended to states far from equilibrium
to identify time correlation function expressions for trans-
port coefficients. Next, these expressions were evaluated
for shear flow using a nonequilibrium version of Kadanoff-
Swift mode-coupling theory.2 They found that for an
asymptotically small shear rate, the nonlinear shear viscosity
has the form

n(a) = no+m1a"?, )

where a is the magnitude of the shear rate and m¢ is the
shear viscosity for a Newtonian fluid. The coefficient ),
was expressed in terms of several mode-coupling integrals
that were evaluated numerically.. Subsequently, Yamada
and Kawasaki® formulated the problem in terms of a
Fokker-Planck equation associated with the nonlinear
Navier-Stokes-Langevin equations. Approximations were in-
troduced that amount to replacing the nonlinear Fokker-
Planck equation by the corresponding equation linearized
around the local equilibrium state. A time correlation func-
tion expression for the shear viscosity was obtained, similar
to that of Kawasaki and Gunton. The numerical value for
7, determined by Yamada and Kawasaki differs from that of
Kawasaki and Gunton. Both calculations were limited to
mode-coupling effects in an incompressible fluid. Several
years later, Ernst er al.* used a kinetic theory in the “‘ring
approximation’’ to discuss nonlinear transport in a compres-
sible fluid. Although their derivation is limited to a low
density gas, the final results are expressed in terms of the
thermodynamic parameters for a general fluid. They ob-
tained additional contributions to n; due to compressibility
effects, but even in the incompressible limit their value
differs from both previous results.

These discrepancies might not be noteworthy except for
recent nonequilibrium computer-simulation results’ that
suggest still different values for 7m;, several orders of magni-
tude larger. Although some related mechanism may be
responsible for this striking difference between theory and
computer simulation,® it remains to remove the possibility
of a serious error in the existing theoretical mode-coupling
calculations. In addition, there is interest in a possible rela-
tionship of the value of n; to the mode-coupling amplitude
of long-time tails for equilibrium fluctuations.” Reliable
theoretical values of n, are required to test the proposed re-
lationship. The objective here is to report the results of a
direct calculation of m; from the nonlinear Navier-Stokes-
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Langevin equations for a compressible fluid in the two-
mode-coupling approximation. Complete numerical agree-
ment with Ernst et al. is obtained. Furthermore, in the
incompressible-fluid limit the analytic expressions of Ernst
et al., Yamada and Kawasaki, and those reported here, are
all found to be equivalent. It is concluded that the differ-
ence of Yamada and Kawasaki’s value is due to an inaccura-
cy of the numerical integration. It is also suggested that
higher-order mode-coupling effects retained by Kawasaki
and Gunton should be neglected for self-consistency. In
this' case their results reduce to those of Yamada and
Kawasaki.

The nonlinear Navier-Stokes-Langevin equations® are a
model of the microscopic local conservation equations for
the mass, energy, and momentum densities. The fluxes in
these equations can be separated into Euler and dissipative
parts in analogy to the macroscopic hydrodynamic fluxes.
The remaining ‘‘fast’> degrees of freedom at the microscopic
level are represented by an additional random component
with Gaussian-Markovian statistics. For example, the Euler
contributions to the microscopic stress tensor are identified
by a Gallilean transformation to the local rest frame,

20 (D) =p(D)D,(0),(0) + 1(x) 6))

where ;U is the stress tensor and ?[, is the same quantity re-
ferred to the local rest frame. The latter is defined by the
velocity field ;=p~!p,, where p is the momentum density
and p is the mass density. The caret over these quantities is
used to differentiate these phase functions from their corre-
sponding hydrodynamic (macroscopic) variables. Next, the
stress tensor in the local rest frame is further separated into
a local pressure D, dissipative part t{;‘, and a random com-
ponent . Then Eq. (2) becomes

1y(0) = p(O), ()9, (1) + p(r)8,+ 15(r) + 1 {(1)

The macroscopic stress tensor has a form similar to (3) in
terms of the hydrodynamic variables,

ty(r)E (;U(r)) ’ 3)
=p(M UM U(r) +p(r)d,+ 4 (r) , 4)

where p and p are the macroscopic pressure and density,
and U(r) is the macroscopic flow velocity. The brackets
denote an average over the appropriate nonequilibrium
state. Finally, tJ is the irreversible part of the macroscopic
stress tensor.

For uniform shear flow, the macroscopic velocity is taken
along the x direction with constant gradient along the y axis,

Ui=ay, Uy=U,=0 . )
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The nonlinear shear viscosity n(a) is defined by

tg=—m(a)a . ®)
An expression for n(a) now follows from Egs. (3) and (4),
n(@a=—(i3) +pUUy— (pisdy) , Q)

where the average of the random component has been de-
fined as zero. The expression (7) is quite general. To cal-
culate the right side of this equation, ¢, is defined in the
Navier-Stokes limit (small spatial variations), by analogy
with Newton’s viscosity law,

du, , v,
9y + dx ] ’

t;y= —NB

®

where the bare viscosity mp has been distinguished from the
true viscosity . Equations (8) and (3), together with a
similar decomposition of the energy flux, define the
Navier-Stokes-Langevin equations (further details are given
in Ref. 8). These are a closed set of equations from which
all quantities in (7) can be calculated. The deviations of the
microscopic variables from their macroscopic values are due
to thermal fluctuations. To the extent that these are small,
it is reasonable to simplify (7) further by retaining only such
terms to quadratic order. The result is

n(a) =mp—p(dv,(r)dv,(r)) . )

For self-consistency, the correlation function on the right
side of (9) should be calculated from the Navier-Stokes-
Langevin equations to linear order in these deviations.
Equation (9) will be referred to as the two-mode-coupling
approximation.
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To evaluate the correlation function in (9) it is con-
venient to use the equivalent Fourier representation

n(a)—ng=pV‘12(vx(k)vy(4k)) , (10)
X .

where v,;(k) is the Fourier transform of 8v,(r), and V is
the volume. Correlation functions of the type in (10) have
been evaluated elsewhere’ for the shear-flow problem in
terms of the nonequilibrium hydrodynamic modes. At
small shear rates there are dominant contributions from
coupling of shear modes and coupling of sound modes. In
the notation of Ref. 4, Eq. (1) is obtained with

B M*- M
Wl—kBT[ (D)7 + 2D an

Here T is the temperature, kg is Boltzmann’s constant, D,
is the thermal diffusivity, Dy is the sound-damping constant,
and M*~ and M™ are dimensionless constants associated
with mode-coupling integrals for sound and shear modes,
respectively. A comparison of the values obtained for these
constants is given in Table I. (M™*~ applies only for a
compressible fluid and is not obtained in Refs. 1 and 3; also
included in Table I are some other mode-coupling constants
of Ref. 4). The agreement of the present results with those
of Ernst et al. are within the bounds of the numerical accu-
racy.

To explain the discrepancy with Yamada and Kawasaki, it
is first noted that their definition of the shear viscosity is
the same as Eq. (10). Their procedure is then to relate the
nonequilibrium average to a local equilibrium average,
neglecting nonlinear terms in their Fokker-Planck equation,
to obtain the form

n(a)=p*(kgTV)~! 22‘];” dt (v, (k, v, (—k,Dv, (K)v, (—KkD) . (12)
k k'

where v,(k,t) are solutions to the (incompressible) Navier-
Stokes equations lineraized around shear flow. The brackets
() denote a Gaussian local equilibrium distribution
and the subscript ¢ means a cumulant with v,(k)v,(—k)
regarded as a single unit. Although the form of (12) is
quite different from (10), the approximations involved are
the same as those of the Langevin calculation given here.
In fact, it has been verified in detail that the integrals re-
quired to evaluate n; in Yamada and Kawasaki’s expression
[Eq. (B.8) of Ref. 3] is equivalent to that of the present

-
work. Furthermore, the integral expressions of Ernst ef al.

for the mode-coupling coefficients in Table I (Appendix B
of Ref. 4) have also been shown to be equivalent to those
reported here. Consequently, the Fokker-Planck, kinetic
theory, and Langevin methods all lead to the same result,
and differences are attributed to inaccuracies in numerical
integration.

The expression for the shear viscosity given by Kawasaki
and Gunton also starts with the two-mode-coupling approxi-
mation (10) but their transformation to a local equilibrium

TABLE 1. Comparison of mode-coupling coefficients x 102
M Mt MO M M2

Kawasaki and Gunton

(Ref. 1) -14
Yamada and Kawasaki

(Ref. 3) +0.86

Ernst et al.

(Ref. 4) -0.26 —0.406 0 +0.507 —-0.766
Present work —0.256 —0.417 0 +0.510 —0.766
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average is somewhat more complex than (12),
n(a)=a lpV-! E<vx(k)v,( —k) ll —exp| —ap (kg T)'lzj; dtv,(k, — Dv,(—k, — t)]]),,c . (13)
K o .

The time-reversed equations for v,(k, —t) have the same
form as those for v;(k,?) in Yamada and Kawaski, except
with the sign of the shear rate reversed. If the exponential
in (13) is expanded to linear order, the result is the same as
(12) [since m(a)=n(lal|)]. Consequently, differences in
the predicted values of n; from (13) can be attributed to
higher-order terms in the expansion of the exponential.
Since the initial expression (10) is already limited to a two-
mode approximation, it does not appear self-consistent to
retain such higher-order mode-coupling terms in (13).

A unique feature of the Langevin method applied here is
its simplicity. Although the results are equivalent to those
of Refs. 1 and 3, the latter ultimately have to evaluate a lo-

I
cal equilibrium time correlation function of four velocity

fields. Here the nonequilibrium time-independent correla-
tion function of two velocity fields [Eq. (10)], is evaluated
directly. Such static correlation functions obey simple linear
equations that follow directly from the Langevin equations.
Beyond the two-mode approximation this relative simplicity
is less apparent.
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